ĐIỆN TỬ

NGUỒN MÁY TÍNH

I - Cách kiểm tra nguồn có hoạt động không?


Chập chân lệnh P.ON với PG (dùng sợi thiếc đấu dây mầu xanh lá cây vào một dây mầu Xám)
  • Cấp điện cho bộ nguồn và quan sát quạt
  • Nếu quạt quay tít là nguồn đã hoạt động tốt
  • Trường hợp sau đây là nguồn đã hoạt động
    Khi cắm điện và chập chân P.ON với PG thấy quạt quay tít chứng tỏ nguồn hoạt động tốt
  • Trường hợp sau đây là nguồn bị chập các đi ốt chỉnh lưu điện áp ra, quạt nguồn chỉ hơi lắc lư khi cấp điện và chập chân P.ON với PG
    Khi cắm điện và chập chân P.ON với PG thấy quạt hơi lắc lư là do nguồn bị chập phụ tải
  • Trường hợp sau đây là nguồn bị mất hồi tiếp nên điện áp ra tăng cao, mạch bảo vệ hoạt động và ngắt điện áp ra ngay khi nó mới hoạt động.
    Khi cắm điện và chập chân P.ON với PG thấy quạt nguồn quay vài vòng rồi tắt đây là hiện tượng nguồn bị hỏng mạch hồi tiếp ổn định điện áp ra
-----------------------------------------------------

II - Tổng quan về nguồn xung và nguồn ATX

1. NGUYÊN LÝ NGUỒN XUNG
1.1. Khái niệm :
- Mạch nguồn xung (còn gọi là nguồn ngắt/mở – switching) là mạch nghịch lưu thực hiện việc chuyển đổi năng lượng điện một chiều thành năng lượng điện xoay chiều.

1.2. Các sơ đồ nghịch lưu :
Có 2 dạng nghịch lưu cơ bản : nối tiếp và song song.

1.2.1. Sơ đồ nghịch lưu nối tiếp




Ưu điểm : Đơn giản, dễ tính toán thiết kế, dễ lắp ráp.
Nhược điểm : Cho phép dung sai linh kiện rất thấp. Không cách ly được mass sơ cấp và thứ cấp nên gây giật cho người sử dụng, gây nguy hiểm cho các linh kiện nhạy cảm. Chính vì vậy nguồn kiểu này hiện nay rất ít được sử dụng.
Một trong những thiết bị điện tử dân dụng có nhiều ở Việt nam sử dụng nguồn nghịch lưu nối tiếp là máy thu hình Samsung CW3312, Deawoo 1418.

1.2.2. Sơ đồ nghịch lưu song song :


Ưu điểm : Dễ thay đổi điện áp ra, cho phép dung sai linh kiện lớn. Mass sơ cấp và thứ cấp được cách ly tốt, an toàn cho người sử dụng và tải.
Nhược điểm : Mạch phức tạp, khó sửa chữa
Do khả năng cách ly tốt nên mạch nghịch lưu song song được dùng trong tất cả cả các bộ nguồn máy tính, từ AT đến ATX. Loạt bài này sẽ tập trung phân tích mạch nghịch lưu song song trong nguồn ATX.

2. NGUỒN MÁY TÍNH (ATX)
2.1. Chức năng :
Biến đổi nguồn xoay chiều dân dụng (ở Việt Nam là 220v/50Hz, Nhật Bản là 110V/60Hz …) thành các điện áp một chiều cung cấp cho PC.
Các mức nguồn một chiều ra bao gồm :
+5V, +12V, +3.3V, -5V, -12V, +5V STB (standby – cấp trước, chờ), +4.5-5V PS-ON (Power Switch On – công tắc mở/bật nguồn), +5V PG (Power Good – Nguồn tốt, tín hiệu đồng bộ cho tất cả các mạch điện trong PC cùng khởi động).

2.2. Sơ đồ khối nguồn ATX

2.3. Chức năng các khối :


(1) Bảo vệ nguồn và tải khi bị sét đánh, khi điện áp vào tăng đột ngột.
Lọc, loại bỏ hoặc giảm thiểu các xung nhiễu công nghiệp thông qua nguồn AC đi vào mạch nguồn ATX, nếu những nhiễu này không được loại bỏ có thể gây cháy nổ mạch nguồn, tải, giảm độ ổn định khi tải làm việc.
(2) Ngắt mở theo xung kích thích, nhằm tạo ra dòng điện không liên tục trên biến áp chính để lợi dụng hiện tượng cảm ứng điện từ tạo ra điện áp cảm ứng trên thứ cấp.
(3) Là tải của công suất chính, tạo điện áp ra thứ cấp, đồng thời cách ly giữa 2 khối sơ/thứ cấp để loại bỏ mass (điện áp cao) của sơ cấp bảo vệ tải và người sử dụng.
(4) Là một mạch nghịch lưu công suất nhỏ, có thể dùng dao động riêng hoặc blocking
(5) Là tải của công suất cấp trước, nhằm tạo ra điện áp cấp trước gồm 2 mức : 5V, 12-16V cung cấp cho dao động, PS-ON, STB và khuyếch đại kích thích.
(6) Nắn, lọc, ổn áp đưa ra các điện áp một chiều standby.
(7) Là một mạch dao động RC nhằm tạo ra xung vuông có tần số cố định (các nguồn đời cũ có tần số 13KHz, nguồn đời mới là 19KHz). Xung này được gửi tới điều khiển công suất chính đóng/mở. Xung ra từ dao động có độ rộng xung (tx) biến đổi theo điện áp ra, nếu điện áp ra cao hơn thiết kế thì độ rộng xung giảm xuống. Ngược lại, nếu điện áp ra giảm thấp hơn thiết kế thì độ rộng xung tăng lên. Vì vậy IC thực hiện dao động có tên là PWM (Pulse Wide Modulation – điều khiển độ rộng xung)
(8) Khuyếch đại tăng cường biên độ xung điều khiển. Đầu vào của mạch chính là xung vuông ra từ mạch dao động.
(9) Là tải của mạch khuyếch đại dao động kích thích với mục đích ghép xung kích thích sang công suất chính, đồng thời không làm mất đi sự cách ly giữa phần sơ cấp, thứ cấp.
(10) Bao gồm các mạch nắn, lọc, ổn áp. Đầu vào là điện áp xoay chiều lấy ra từ biến áp công suất chính, đầu ra là các mức áp một chiều ỏn định đưa đến jack ATX.
(11) Mạch hồi tiếp ổn định điện áp hoặc ngắt dao động khi điện áp ra quá lớn, ngắt dao động khi có chập tải để bảo vệ mạch nguồn cũng như bảo vệ tải (tránh hư hỏng thêm)
(12) Mạch khuyếch đại thuật toán, sẽ hoạt động sau khi máy được bật, tạo ra điện áp PG, thời điểm xuất hiện PG sẽ trễ hơn các điện áp chính khoảng 0.2-0.5 giây, nhằm chờ cho các điện áp ra đã ổn định. PG đưa vào main và kích thích tất cả các mạch trên main bắt đầu hoạt động ở cùng 1 thời điểm (đồng bộ thời điểm gốc)


III - Các mạch điện cơ bản

·  - Transistor trên nguồn ATX thường được sử dụng làm các mạch công tắc,
·  khi nhìn vào các mạch này bạn có thể nhầm lẫn đó là mạch khuếch đại.- Ở mạch công tắc, các Transistor hoạt động ở một trong hai trạng thái là “dẫn bão hoà” hoặc “không dẫn”

Các Transistor trong mạch bảo vệ của nguồn ATX, hoạt động ở trạng thái dẫn bão hoà hoặc tắt.
·  IC khuếch đại thuật toán OP-AMPLY1) Ký hiệu của IC khuếch đại thuật toán – OP-Amply


OP-Amply – IC khuếch đại thuật toán
  • Cấu tạoOP-Amply có các chân như sau:- Vcc – Chân điện áp cung cấp- Mass – Chân tiếp đất- IN1 – Chân tín hiệu vào đảo- IN2 – Chân tín hiệu vào không đảo- OUT – Chân tín hiệu ra
  • Trên
sơ đồ nguyên lý, OP-Amly thường ghi tắt không có chân Vcc và chân Mass,
hai chân IN1 và IN2 có thể tráo vị trí cho nhau.
2) Nguyên lý hoạt động của OP-Amply
OP-Amply hoạt động theo nguyên tắc: Khuếch đại sự chênh lệch giữa hai điện áp đầu vào IN1 và IN2
- Khi chênh lệch giữa hai điện áp đầu vào bằng 0 (tức IN2 – IN1 = 0V)
thì điện áp ra có giá trị bằng khoảng 45% điện áp Vcc
- Khi điện áp đầu vào IN2 > IN1 => thì điện áp đầu ra tăng lên bằng Vcc
- Khi điện áp đầu vào IN2 < IN1 => thì điện áp đầu ra giảm xuống bằng 0V

Sơ đồ bên trong của OP-Amply
3) Ứng dụng của OP-Amply
3.1 – Mạch khuếch đại đảo dùng OP-Amply

- Nếu ta cho tín hiệu vào đầu vào đảo (cực âm) và đầu vào không
đảo (cực dương) đem chập xuống mass ta sẽ được một mạch khuếch đại đảo.
- Hệ số khuếch đại có thể điều chỉnh được bằng cách điều chỉnh giá trị
các điện trở Rht và R1, hệ số khuếch đại bằng tỷ số giữa hai điện trở
này.
K = Rht / R1 trong đó K là hệ số khuếch đại của mạch
3.2 – Mạch khuếch đại không đảo dùng OP-Amply


Đây là sơ đồ của mạch khuếch đại không đảo, về hệ số khuếch đại thì
tương đương với mạch khuếch đại đảo nhưng điểm khác là điện áp ra Vout cùng pha với điện áp đầu vào Vin
3.3 – Mạch khuếch đại đệm (khuếch đại dòng điện) dùng OP-Amply.

Khi đem đầu ra đấu với đầu vào âm (hay đầu vào đảo) rồi cho tín hiệu
vào cổng không đảo ta sẽ thu được một mach khuếch đại có hệ số
khuếch đại điện áp bằng 1, tuy nhiên hệ số khuếch đại về dòng lại rất
lớn, vì vậy mạch kiểu này thường được sử dụng trong các mạch khuếch đại
về dòng điện.
3.4 – Mạch so sánh dùng OP-Amply


  • Khi V2 = V1 thì điện áp ra Vout = khoảng 45% Vcc và không đổi
  • Khi V2 > V1 hay V2 – V1 > 0 thì Vout > 45% Vcc
  • Khi V2 < V1 hay V2 – V1 < 0 thì Vout < 45% Vcc
  • Khi V1 không đổi thì Vout tỷ lệ thuận với V2
  • Khi V2 không đổi thì Vout tỷ lệ nghịch với V1
·  IC so quang (Opto)1 – Cấu tạo: – IC so quang được cấu tạo bởi một đi ốt phát quang và một đèn thu
quang, hai thành phần này cách ly với nhau và có thể cách ly được điện
áp hàng trăm vol, khi đi ốt dẫn nó phát ra ánh sáng chiếu vào cực Bazơ
của Transistor thu quang làm cho đèn này dẫn, dòng điện qua đi ốt thay
đổi thì dòng điện qua đèn cũng thay đổi theo


IC so quang thực tế
2 – Nguyên lý hoạt động
- Khi có dòng điện I1 đi qua đi ốt, đi ốt sẽ phát ra ánh sáng và
chiếu vào cực B của đèn thu quang, đèn thu quang sẽ dẫn và cho dòng I2
- Dòng I1 tăng thì dòng I2 cũng tăng
- Dòng I1 giảm thì dòng I2 cũng giảm
- Dòng I1 = 0 thì dòng I2 = 0
Đi ốt phát quang và đèn thu quang được cách ly với nhau và có thể
có điện áp chênh lệch hàng trăm Vol
Hoạt động của IC so quang
3 – Ứng dụng của IC so quang
- IC so quang thường được ứng dụng trong mạch hồi tiếp trên các bộ nguồn xung.
- Chúng có tác dụng đưa được thông tin biến đổi điện áp từ thứ
cấp về bên sơ cấp nhưng vẫn cách ly được điện áp giữa sơ cấp và thứ
cấp.
- Sơ cấp của nguồn (thông với điện áp lưới AC) và thứ cấp của nguồn (thông với mass của máy)

·  IC tạo điện áp dò sai- Người ta thường dùng IC tạo áp dò sai KA431(hoặc TL431) trong các mạch nguồn để theo dõi và khuếch đại những biến đổi điện áp đầu ra thành dòng điện chạy qua IC so quang, từ đó thông qua IC so quang nó truyền được thông tin biến đổi điện áp về bên sơ cấp.

Cấu tạo và ký hiệu của IC tao áp dò sai KA 431


Hình dáng IC – KA 431 




·  Đi ốt kép- Trong nguồn ATX người ta thường sử dụng Đi ốt kép để chỉnh lưu điện áp đầu ra- Hình dáng đi ốt kép trông tương tự như đèn công suất và có ký hiệu như ảnh trên- Đi ốt kép thường cho dòng lớn và chịu được tần số cao

·  Cuộn dây lọc gợn cao tần. Cuộn dây lọc nhiễu hình xuyếnTrong nguồn ATX ta thường nhìn thấy cuộn dây như trên ở đầu ra gần các
bối dây cấp nguồn xuống Mainboard, tác dụng của cuộn dây này là để chặn
các nhiễu cao tần, đồng thời kết hợp với tụ lọc để tạo thành mạch lọc
LC lọc cho các điện áp ra được bằng phẳng hơn.




Common Posts